
Exact and Efficient Intersection Resolution for Mesh Arrangements
JIA-PENG GUO and XIAO-MING FU∗, University of Science and Technology of China, China

We propose a novel method to exactly and efficiently resolve intersections
and self-intersections in triangle meshes. Our method contains two key
components. First, we present a new concept of geometric predicates, called
indirect offset predicates, to represent all intersection points through a new
formulation and establish all necessary geometric predicates. Consequently,
we reduce numerical errors in floating-point evaluations and improve the
success rate of early stages of arithmetic filtering. Second, we develop lo-
calization and dimension reduction techniques for sorting, deduplicating,
and locating the intersection points, thereby boosting efficiency and paral-
lelism while maintaining accuracy. Rigorous testing confirms the robustness
of our algorithm and consistency with previous methods. Comprehensive
testing across diverse datasets further highlights the speed improvement
achieved by our method, which is one order of magnitude faster than the
state-of-the-art methods.

CCS Concepts: • Computing methodologies → Shape modeling.

Additional Key Words and Phrases: mesh arrangements, intersection reso-
lution, constrained triangulation, geometric predicates

ACM Reference Format:
Jia-Peng Guo and Xiao-Ming Fu. 2024. Exact and Efficient Intersection Res-
olution for Mesh Arrangements. ACM Trans. Graph. 43, 6, Article 165 (De-
cember 2024), 14 pages. https://doi.org/10.1145/3687925

1 INTRODUCTION
In recent years, there has been a rapid growth in the quantity of 3D
models, with one prominent category being triangle meshes [Koch
et al. 2019; Zhou and Jacobson 2016]. While triangle meshes are
extensively applied in modeling [Botsch et al. 2010, 2006; Botsch and
Sorkine 2007; Sorkine 2006], simulation [Cheng et al. 2013; Si 2015],
and manufacturing [Attene et al. 2018; Bermano et al. 2017; Livesu
et al. 2017; Wang et al. 2013], the quality issues (e.g., intersection
and self-intersection), are at odds with the strict requirements in
many applications. Even if the input meshes are free from these
issues, intersections are also introduced intentionally by specific
applications, such as constructive solid geometry [Laidlaw et al.
1986]. It is essential to address and resolve these intersections to
generate clean outputs.

Mesh arrangements convert meshes to a suitable form while pre-
serving input geometry [Zhou et al. 2016]. It serves as the foundation
for many high-level algorithms (e.g., mesh repair [Attene et al. 2013],
boolean operations [Cherchi et al. 2022; Trettner et al. 2022], and
volume meshing [Diazzi and Attene 2021; Hu et al. 2018]). We focus
∗The corresponding author

Authors’ address: Jia-Peng Guo, gjp171499@mail.ustc.edu.cn; Xiao-Ming Fu, fuxm@
ustc.edu.cn, University of Science and Technology of China, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/12-ART165 $15.00
https://doi.org/10.1145/3687925

Input with intersections Output without intersections

Fig. 1. Our algorithm exactly resolves intersections and self-intersections
within general triangle meshes (left) without any additional assumption
and produces triangulated results that completely preserve input geometry
(bottom right). It enables mesh arrangements to further partition space into
closed and consistently oriented cells (top right).

on the crucial initial stage of mesh arrangements: processing an
arbitrary set of triangles without any additional assumptions about
the input, and outputting an intersection-free simplicial complex
that preserves the consistency of the original geometry (Figure 1).
To solve this problem, many algorithms and tools have adopted

the well-established pipeline [Attene 2014; Attene et al. 2013; Cher-
chi et al. 2020; Zhou et al. 2016]: (1) intersection detection, where
all pairs of triangles that mutually intersect are identified; (2) in-
tersection classification, which determines the intersections (e.g.,
points and segments) between intersecting triangles; and (3) in-
tersection elimination, which involves splitting triangles at their
intersections to produce a valid configuration. While the robustness
of these algorithms is guaranteed by various means, there remains
significant room for improvement in efficiency. Generally, perfor-
mance improvements are still limited by critical factors, such as the
representation of intersection points, relevant geometric predicates
(specifically, coordinate comparisons and point orientations), and
associated sub-algorithms (encompassing sorting, deduplicating,
and locating intersections).
Zhou et al. [2016] use rational numbers to exactly represent in-

tersection points, yet leading to a non-negligible reduction in per-
formance. Conversely, Cherchi et al. [2020] avoid explicitly con-
structing intersection points, instead implicitly representing them
by combining geometric primitives, such as lines and planes, as
suggested by [Attene 2020]. They reformulated the expression of
these implicitly represented points as a fraction of polynomials and
incorporated them into standard predicates using robust and ef-
ficient arithmetic filtering techniques [Shewchuk 1996, 1997] (for
readers new to arithmetic filtering, see Paragraph “numerical meth-
ods” in Section 2). Evaluating these predicates is considerably faster
than those relying on rational numbers, which is key to the success

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

HTTPS://ORCID.ORG/0009-0009-0073-7399
HTTPS://ORCID.ORG/0000-0001-8479-0107
https://doi.org/10.1145/3687925
https://orcid.org/0009-0009-0073-7399
https://orcid.org/0000-0001-8479-0107
https://doi.org/10.1145/3687925

165:2 • Jia-Peng Guo and Xiao-Ming Fu

achieved by [Cherchi et al. 2020]. However, their polynomials in-
clude terms for both input point coordinates and their differences.
In practice, intersections typically arise from nearby geometry prim-
itives, indicating that the involved coordinate differences are often
several orders of magnitude less than the coordinates themselves.
Thus, the relatively larger coordinates terms in their polynomials
lead to greater numerical errors in floating-point arithmetic, wider
error bounds in (semi-)static filters [Lévy 2016; Meyer 2008], and,
consequently, a higher failure rate of these filters.
To address the issues, we propose the concept of indirect offset

predicates, which implicitly represent intersection points and re-
formulate their expression as a sum of base and offset parts. The
base part is any input point for constructing the intersection point,
while the offset part comprises polynomials that exclusively include
terms for the differences between input coordinates. When the new
expressions of intersection points are incorporated into standard
predicates, the base part is subtracted by other base parts or input
points, ensuring that the polynomials of indirect offset predicates
maintain terms only for coordinates differences. Thus, by involving
only the differences of input coordinates in floating-point calcula-
tions, we reduce the accumulated numerical error, narrow the error
bounds, and enhance the success rate of filters.

We extend the framework of [Cherchi et al. 2020] to incorporate
our new implicit points and predicates. However, their method
relies on a global point set to deduplicate all intersection points and
treats the intersection locating process as 3D problems solved by
3D intersection tests, which increases the computational burden
and limits algorithm parallelism. To address these issues, we sort
intersection points locally along 1D lines to eliminate duplicates and
simplify the intersection locating process into a 2D problem. This
greatly reduces the complexity and number of calls to predicates.
We test our algorithm on two datasets (one challenging dataset

from [Zhou and Jacobson 2016] and one dataset created by us for
stress testing purposes; see the construction details in Section 5) and
compare our algorithm with the two latest algorithms [Cherchi et al.
2020; Zhou et al. 2016] that have the same problem settings as ours.
Our algorithm is approximate 15 times faster than [Cherchi et al.
2020] and 56 times faster than [Zhou et al. 2016] on the Thingi10k
dataset. On the stress-testing dataset, it is about 30 times faster than
[Cherchi et al. 2020] and 75 times faster than [Zhou et al. 2016].
The results demonstrate the superior performance of our algorithm
compared to both the comparison algorithms (Figure 2).

2 RELATED WORK
Numerical methods. Geometric algorithms typically consist of

two fundamental components, predicates and constructors [Fortune
and VanWyk 1996]. Arithmetic filtering techniques are developed to
evaluate predicates exactly while minimizing performance loss [Dev-
illers and Pion 2003; Shewchuk 1996, 1997]. It uses a series of floating-
point filters (e.g., static filter [Fortune and Van Wyk 1993], semi-
static filter [Meyer 2008], and dynamic filter [Brönnimann et al.
1998]) and switches to exact arithmetic if all filters fail. The (semi-
)static filter estimates an upper bound of the rounding error (i.e., the
error bound) for evaluating a predicate. The sign of the predicate is
determined if the magnitude of its value evaluated in floating-point

Ours 252s[Cherchi et al. 2020] 2865s

Model ID.996816 from Thingi10k

Thingi10k dataset Stress-testing dataset

Fig. 2. We show the total runtime of ours and the other two algo-
rithms [Cherchi et al. 2020; Zhou et al. 2016] on the Thingi10k dataset [Zhou
and Jacobson 2016] and our constructed stress-testing dataset. We exclude
the two most challenging models in the Thingi10K dataset (ID.996816 and
ID.101633) from the previous statistics and show the former separately here
(see statistics about the latter in Table 1).

arithmetic exceeds the error bound. The static filter estimates a
static error bound by analyzing the predicate expression based on
given input value bounds. On the other hand, since the input value
bounds and the error bound are positively correlated [Meyer 2008],
the semi-static filter initially assumes input value bounds of 1 to
evaluate the error bound, then scales it according to actual input
value bounds.

However, many results generated by constructors still require
high-precision numbers, hindering the use of these strategies. For ex-
ample, the intersections are represented by rational numbers [Hem-
mer et al. 2023; Hu et al. 2018; Zhou et al. 2016] or fixed-precision
rational numbers [Nehring-Wirxel et al. 2021; Trettner et al. 2022].
Attene [2020] represent intersection points implicitly through geo-
metric constructions over input points, rewrite these points as frac-
tions of polynomials, and reduce the predicates containing these
points to fractions of polynomials. Therefore, arithmetic filtering
can be seamlessly applied to evaluate predicates containing inter-
section points. To apply (semi-)static filters, implicit points’ value
bound and error bound are first estimated and then substituted into
the predicate’s expression for further error propagation. However,
large input value bounds for their intersection points lead to wide
error bounds. To address this, we propose indirect offset predicates.

Mesh arrangements. We focus on the crucial initial stage of mesh
arrangements, i.e., intersection resolution. Two established methods
(each associated with its corresponding geometry representation)
exist for this problem: vertex-based [Cherchi et al. 2020; Zhou et al.
2016] and plane-based [Bernstein and Fussell 2009; Campen and

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

Exact and Efficient Intersection Resolution for Mesh Arrangements • 165:3

Kobbelt 2010; Trettner et al. 2022]. Plane-based methods are com-
monly seen in CSG applications, with EMBER [Trettner et al. 2022]
being the fastest among all methods under specific assumptions in
CSG scenarios. Vertex-based methods are widely adopted across
various applications [Attene et al. 2013; Diazzi and Attene 2021;
Diazzi et al. 2023; Hu et al. 2018; Zheng et al. 2024]. However, dif-
ferent methods always entail different objectives and requirements
when targeted toward different applications, thus they cannot al-
ways be completely equivalent. The conversion between vertex-
based and plane-based representations is also not trivial and is often
accompanied by a loss of precision [Bernstein and Fussell 2009;
Nehring-Wirxel et al. 2021; Trettner et al. 2022; Wang and Manocha
2013]. Considering that the exactness of the entire process can be
guaranteed if algorithms and applications are implemented under
the same geometric representations (e.g., the geometric kernels in
CGAL [Brönnimann et al. 2024] and the indirect predicates [Attene
2020]), we develop our vertex-based algorithm under the same gen-
eral problem settings as [Cherchi et al. 2020; Zhou et al. 2016] to
meet the requirements of most applications.

Intersection detection. Detecting intersections among trianglemeshes
is a common task in geometric processing. To enhance the efficiency
of this process, spatial partitioning is commonly employed, enabling
intersection checks within each sub-space. Bounding Volume Hier-
archy (BVH) is often favored due to its superior balance between
runtime efficiency and memory usage. Zhou et al. [2016] and Barki
et al. [2015] use a segment tree [Zomorodian and Edelsbrunner 2000],
Cherchi et al. [2020] and Attene [2014] use a KDTree, and Cherchi
et al. [2022] and Park [2004] use an OcTree with a common partition
strategy (partitioning the nodes to eight sub-nodes with equal vol-
umes). In CSG applications where triangles originate from different
solids without self-intersections, more tailored strategies are devel-
oped to boost speed. Sheng et al. [2018] use an adaptive OcTree
strategy that stops node partition once a node exclusively contains
triangles from a single mesh. Trettner et al. [2022] use an AABB
tree with a "median split" approach to separate a subset of a solid
from the sub-nodes as early as possible. While these strategies are
effective in these specific scenarios, their performance may diminish
in others, such as with triangles from a single self-intersecting mesh.
We adopt a general and effective adaptive partition strategy, which
is detailed in Section 4.3.

Snap rounding. New degeneracy and self-intersections may be
introduced again when naively rounding exact points to floating-
point representation. This long and open problem, known as snap
rounding (or vertex rounding) [Devillers et al. 2018], exists in mesh
arrangements and similar algorithms that utilize high-precision
points. While solutions to this problem do exist [Fortune 1999], it is
impractical due to its complexity. Though downstream applications
can adopt the same point form to circumvent this problem [Cherchi
et al. 2022] or relax the input requirements to tolerate it [Diazzi
and Attene 2021], such approaches are not always practical for
all downstream applications. Both [Cherchi et al. 2020; Zhou et al.
2016] propose similar heuristics to address this problem, involving
rounding coordinates from double to single precision and running
their algorithms again. Typically, after at most two such steps, nearly

q

b

a

p

LPI={L(a,b),P(o,p,q)}LLI={L(a,b),L(p,q)}

a

b
o

p

q

a

b

c
o

p

q

r

t
s

TPI={P(a,b,c),P(o,p,q),P(r,s,t)}

Fig. 3. Our algorithm defines three types of intersection points and corre-
sponding implicit points, each constructed by lines and planes composed
of explicit points (in yellow). Constructing LLI points requires assistance
through projection onto orthogonal planes. We illustrate the LLI point
constructed by two lines from coplanar triangles; they are also commonly
constructed by lines from non-coplanar triangles.

all results are free of the snap rounding problem. Our algorithm
follows a similar heuristic.

3 OFFSET INDIRECT PREDICATES
Our new concept of predicates aligns with the core idea presented
in [Attene 2020], which represents intersection points implicitly
as combinations of input points and extends standard predicates
to incorporate these implicit points, called indirect predicates. Our
approach is founded on a different basis to avoid terms for large
input coordinates (i.e., large input value bounds) in expressions
of predicates. We introduce a new formulation for implicit points,
consisting of base and offset parts. Based on the new formulation,
the derivation of new predicate expressions contains terms exclu-
sively for coordinate differences, achieving tighter error bounds and
higher success rates in arithmetic filtering. These are referred to
as indirect offset predicates. To evaluate the predicates, we sequen-
tially apply semi-static filters, dynamic filters, and floating-point
expansions [Lévy 2016] based on IEEE-754 double numbers.

3.1 Point Representation
We formulate the expression of an implicit point i = (𝑖𝑥 , 𝑖𝑦, 𝑖𝑧) as
𝛽 + _/𝑑 = (𝛽𝑥 , 𝛽𝑦, 𝛽𝑧) + (_𝑥 , _𝑦, _𝑧)/𝑑 , where the base part 𝛽 is
any input point (i.e., explicit point, abbreviated as EXP), and the
offset part _/𝑑 is a fraction of polynomials dedicated solely to the
differences in input coordinates.
An implicit point becomes undefined (𝑑 = 0) in degenerate con-

figurations of geometric primitives. Our algorithm ensures that the
implicit point is well-defined by other checks (e.g., intersection de-
tection) before construction. We need to determine the sign of 𝑑
to determine the sign of predicates. A semi-static filter estimates
a rounding error bound Y𝑑 = Y0𝛿𝑛 for 𝑑 [Meyer 2008], where Y0
and 𝑛 are constants derived from the numerical error analysis of
expression of 𝑑 , and 𝛿 is the largest magnitude among the inputs. If
|𝑑 | > Y𝑑 , its sign is confirmed by the semi-static filter to be reliable.
Otherwise, a dynamic filter evaluates the interval of 𝑑 and confirms
a reliable sign if its interval is unambiguous (i.e., does not overlap
zero). If the dynamic filter fails, floating-point expansion exactly
determines the sign.
We define three types of intersection points in our algorithm,

each with its corresponding implicit point formulation (Figure 3). If

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

165:4 • Jia-Peng Guo and Xiao-Ming Fu

not explicitly distinguished, we use the same name interchangeably
to refer to both intersection points and their corresponding implicit
points.

3.1.1 Line-Line Intersection (LLI). We first define line-line intersec-
tion in 2D. Given two lines in 2D, each defined by two endpoints
(a, b) and (p, q), their intersection point is formulated as below:

p𝑆 = (𝛽𝑆𝑥 , 𝛽𝑆𝑦) + (_𝑆𝑥 , _𝑆𝑦)/𝑑𝑆 ,

where
𝛽𝑆𝑥 = 𝑎𝑥 , 𝛽𝑆𝑦 = 𝑎𝑦,

_𝑆𝑥 = 𝑛𝑆 (𝑏𝑥 − 𝑎𝑥), _𝑆𝑦 = 𝑛𝑆 (𝑏𝑦 − 𝑎𝑦),

𝑑𝑆 =

����𝑎𝑥 − 𝑏𝑥 𝑎𝑦 − 𝑏𝑦
𝑞𝑥 − 𝑝𝑥 𝑞𝑦 − 𝑝𝑦

���� , 𝑛𝑆 =

����𝑎𝑥 − 𝑝𝑥 𝑎𝑦 − 𝑝𝑦
𝑞𝑥 − 𝑝𝑥 𝑞𝑦 − 𝑝𝑦

���� .
Now we consider two lines (a, b) and (p, q) in 3D. We first find a
proper orthogonal plane (𝑋𝑌 , 𝑌𝑍 , or 𝑍𝑋) to project two lines to
avoid degeneration. Without loss of generality, we assume the found
orthogonal plane is XY plane, and their intersection point is:

p𝑆 = (𝛽𝑆𝑥 , 𝛽𝑆𝑦, 𝛽𝑆𝑧) + (_𝑆𝑥 , _𝑆𝑦, _𝑆𝑧)/𝑑𝑆 ,
𝛽𝑆𝑧 = 𝑎𝑧 , _𝑆𝑧 = 𝑛𝑆 (𝑏𝑧 − 𝑎𝑧),

where 𝛽𝑆𝑥 , 𝛽𝑆𝑦, _𝑆𝑥 , _𝑆𝑦, 𝑑𝑆 , 𝑛𝑆 are as defined in the above equation.
The semi-static filter for 𝑑𝑆 is:

Y𝑑𝑆 = 8.881784197001252 10−16𝛿2
𝑑𝑆
,

𝛿𝑑𝑆 = max{|𝑎𝑥 − 𝑏𝑥 |, |𝑎𝑦 − 𝑏𝑦 |, |𝑞𝑥 − 𝑝𝑥 |, |𝑞𝑦 − 𝑝𝑦 |},
𝛿𝑆 = max{𝛿𝑑𝑆 , |𝑎𝑥 − 𝑝𝑥 |, |𝑎𝑦 − 𝑝𝑦 |}.

Here, 𝛿𝑑𝑆 is used in Y𝑑𝑆 and 𝛿𝑆 will be used in subsequent predicates’
semi-static filters.

3.1.2 Line-Plane Intersection (LPI). Given a line and a plane in 3D,
defined by two endpoints (a, b) and three points (o, p, q) respec-
tively, their intersection point is:

p𝐿 = (𝛽𝐿𝑥 , 𝛽𝐿𝑦, 𝛽𝐿𝑧) + (_𝐿𝑥 , _𝐿𝑦, _𝐿𝑧)/𝑑𝐿,

where
𝛽𝐿𝑥 = 𝑎𝑥 , 𝛽𝐿𝑦 = 𝑎𝑦, 𝛽𝐿𝑧 = 𝑎𝑧 ,

_𝐿𝑥 = 𝑛𝐿 (𝑏𝑥 − 𝑎𝑥), _𝐿𝑦 = 𝑛𝐿 (𝑏𝑦 − 𝑎𝑦), _𝐿𝑧 = 𝑛𝐿 (𝑏𝑧 − 𝑎𝑧),

𝑑𝐿 =

������a − b
p − o
q − o

������ , 𝑛𝐿 =

������a − o
p − o
q − o

������ .
The semi-static filter for 𝑑𝐿 is:

Y𝑑𝐿 =4.884981308350689 10−15𝛿3
𝑑𝐿
,

𝛿𝑑𝐿 =max{|𝑎𝑥 − 𝑏𝑥 |, |𝑎𝑦 − 𝑏𝑦 |, |𝑎𝑧 − 𝑏𝑧 |, |𝑝𝑥 − 𝑜𝑥 |,
|𝑝𝑦 − 𝑜𝑦 |, |𝑝𝑧 − 𝑜𝑧 |, |𝑞𝑥 − 𝑜𝑥 |, |𝑞𝑦 − 𝑜𝑦 |, |𝑞𝑧 − 𝑜𝑧 |},

𝛿𝐿 =max{𝛿𝑑𝐿, |𝑎𝑥 − 𝑜𝑥 |, |𝑎𝑦 − 𝑜𝑦 |, |𝑎𝑧 − 𝑜𝑧 |}.

3.1.3 Triplet-Plane Intersection (TPI). Given three planes in 3D,
defined by three groups of points (a, b, c), (o, p, q) and (r, s, t), their
intersection point is:

p𝑇 = (𝛽𝑇𝑥 , 𝛽𝑇𝑦, 𝛽𝑇𝑧) + (_𝑇𝑥 , _𝑇𝑦, _𝑇𝑧)/𝑑𝑇 ,

where
𝛽𝑇𝑥 = 𝑎𝑥 , 𝛽𝑇𝑦 = 𝑎𝑦, 𝛽𝑇𝑧 = 𝑎𝑧 ,

𝑑𝑇 =

����n𝑜𝑝𝑞 · (b − a) n𝑜𝑝𝑞 · (c − a)
n𝑟𝑠𝑡 · (b − a) n𝑟𝑠𝑡 · (c − a)

���� ,
_𝑇𝑥 = 𝑛𝑇𝑢 (𝑏𝑥 − 𝑎𝑥) + 𝑛𝑇 𝑣 (𝑐𝑥 − 𝑎𝑥),
_𝑇𝑦 = 𝑛𝑇𝑢 (𝑏𝑦 − 𝑎𝑦) + 𝑛𝑇 𝑣 (𝑐𝑦 − 𝑎𝑦),
_𝑇𝑧 = 𝑛𝑇𝑢 (𝑏𝑧 − 𝑎𝑧) + 𝑛𝑇 𝑣 (𝑐𝑧 − 𝑎𝑧),

𝑛𝑇𝑢 =

����n𝑜𝑝𝑞 · (o − a) n𝑜𝑝𝑞 · (c − a)
n𝑟𝑠𝑡 · (r − a) n𝑟𝑠𝑡 · (c − a)

���� ,
𝑛𝑇 𝑣 =

����n𝑜𝑝𝑞 · (b − a) n𝑜𝑝𝑞 · (o − a)
n𝑟𝑠𝑡 · (b − a) n𝑟𝑠𝑡 · (r − a)

���� ,
n𝑜𝑝𝑞 = (p − o) × (q − o), n𝑟𝑠𝑡 = (s − r) × (t − r).

The semi-static filter for 𝑑𝑇 is as follows:

Y𝑑𝑇 =1.3145040611561864 10−13𝛿6
𝑑𝑇

,

𝛿𝑑𝑇 =max{|𝑎𝑥 − 𝑏𝑥 |, |𝑎𝑦 − 𝑏𝑦 |, |𝑎𝑧 − 𝑏𝑧 |, |𝑎𝑥 − 𝑐𝑥 |,
|𝑎𝑦 − 𝑐𝑦 |, |𝑎𝑧 − 𝑐𝑧 |, |𝑝𝑥 − 𝑜𝑥 |, |𝑝𝑦 − 𝑜𝑦 |, |𝑝𝑧 − 𝑜𝑧 |,
|𝑞𝑥 − 𝑜𝑥 |, |𝑞𝑦 − 𝑜𝑦 |, |𝑞𝑧 − 𝑜𝑧 |, |𝑠𝑥 − 𝑟𝑥 |, |𝑠𝑦 − 𝑟𝑦 |,
|𝑠𝑧 − 𝑟𝑧 |, |𝑡𝑥 − 𝑟𝑥 |, |𝑡𝑦 − 𝑟𝑦 |, |𝑡𝑧 − 𝑟𝑧 |},

𝛿𝑇 =max{𝛿𝑑𝑇 , |𝑎𝑥 − 𝑜𝑥 |, |𝑎𝑦 − 𝑜𝑦 |, |𝑎𝑧 − 𝑜𝑧 |,
|𝑎𝑥 − 𝑟𝑥 |, |𝑎𝑦 − 𝑟𝑦 |, |𝑎𝑧 − 𝑟𝑧 |}.

3.2 Point Comparison and Orientation
We replace the explicit points with this implicit expression in a stan-
dard predicate, converting the predicate’s polynomial from Λ to a
fraction of polynomials Δ/𝐷 . Assuming Λ involves only differences
between explicit coordinates, Δ and 𝐷 will similarly contain terms
exclusively for coordinate differences. This is achieved by subtract-
ing base parts from other base parts or explicit points during the
conversion process. 𝐷 is the product of 𝑑 from multiple implicit
points. The same process as determining the sign of 𝑑 of implicit
points is also applied to determine the sign of the numerator Δ.

In classifying and eliminating intersections, we sort intersection
points along segments and locate them on planes. These tasks can be
simplified into lower-dimensional operations. To this end, we intro-
duce two predicates designed to determine the suitable dimension
for projection robustly. Subsequently, we introduce two generalized
predicates to perform orientation tests and coordinate comparisons
on all combinations of implicit points in the reduced dimensions.
For simplicity, we further abbreviate EXP, LLI, LPI, and TPI points
as E, S, L, and T, respectively, to represent combinations of points
accepted by predicates.

3.2.1 Robust Dimension Reduction. In our algorithm, intersection
points are sorted along segments, with endpoints possibly being
EXP, LLI, or LPI points, and are positioned on input triangles with
only explicit vertices. We select dimensions for projection that en-
sure projected segments and triangles are far from degeneracy. This
involves selecting the orthogonal axis (𝑋,𝑌, 𝑍) with the longest
segment projection length and the orthogonal plane (𝑋𝑌,𝑌𝑍, 𝑍𝑋)
with the largest triangle projection area, respectively.

When the endpoints a and b of a segment are explicit points,
the standard predicate longestAxis(a, b) identifies the axis where

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

Exact and Efficient Intersection Resolution for Mesh Arrangements • 165:5

the absolute difference in coordinates between the two points is
maximized. When a and b are implicit points, arithmetic filtering
is required to ensure that the magnitude of coordinate differences
exceeds the numerical error. In this case, longestAxis evaluates the
differences in coordinates between points across three axes, selects
the axis with the greatest absolute difference and employs arithmetic
filtering to prevent degeneration on that axis. For example, with a
and b representing LPI and LLI points, the difference computation
on the 𝑋 axis is:

Δ

𝐷
=

(𝛽𝐿𝑥 − 𝛽𝑆𝑥)𝑑𝐿𝑑𝑆 + (_𝐿𝑥𝑑𝑆 − _𝑆𝑥𝑑𝐿)
𝑑𝐿𝑑𝑆

.

The semi-static filter for Δ is:

YΔ = 6.084585960075558 10−14𝛿6Δ,
𝛿Δ = max{𝛿𝐿, 𝛿𝑆 , |𝛽𝐿𝑥 − 𝛽𝑆𝑥 |}.

The expressions and filters for the remaining axes and combinations
of points are detailed in the supplementary material.
When projecting a triangle onto an orthogonal plane, ensuring

that the projection area’s magnitude exceeds the numerical error
is necessary. The predicate robustProject(a, b, c) evaluates the
projection area across three orthogonal planes and selects the plane
with the largest area. Since all vertices a, b, c of a triangle are explicit
points, we construct the semi-static filter for the projection area
by the method proposed in [Meyer 2008] to prevent degenerate
projection. We demonstrate this with an example on the 𝑌𝑍 plane:

Λ = (𝑐𝑦 − 𝑏𝑦) (𝑏𝑧 − 𝑎𝑧) − (𝑐𝑧 − 𝑏𝑧) (𝑏𝑦 − 𝑎𝑦),
YΛ = 8.88720573725927976811 10−16𝛿Λ𝑎𝑏𝛿Λ𝑏𝑐 ,

𝛿Λ𝑎𝑏 = max{|𝑏𝑦 − 𝑎𝑦 |, |𝑏𝑧 − 𝑎𝑧 |},
𝛿Λ𝑏𝑐 = max{|𝑐𝑦 − 𝑏𝑦 |, |𝑐𝑧 − 𝑏𝑧 |}.

The expressions and filters for the remaining planes are similar; the
only difference is the subscript for dimensions.

3.2.2 Generalized Comparison and Orientation. Coordinate com-
parison pointCompare and orientation tests on 2D orient2d are
trivial for explicit points [Attene 2020], but not for implicit points.
We demonstrate their generalization to the implicit points by show-
casing one case for each. The remaining cases with different com-
binations of implicit points are presented in the supplementary
material. Given an TPI point p𝑇 and an LPI point p𝐿 being com-
pared on the𝑋 axis, the expression of pointCompare_X_TL(p𝑇 , p𝐿)
is:

Δ

𝐷
=

(𝛽𝑇𝑥 − 𝛽𝐿𝑥)𝑑𝑇𝑑𝐿 + (_𝑇𝑥𝑑𝐿 − _𝐿𝑥𝑑𝑇)
𝑑𝑇𝑑𝐿

.

The signs of Δ, 𝑑𝑇 , and 𝑑𝐿 are evaluated to determine whether
the expression’s sign is negative, zero, or positive, which indicates
whether the 𝑋 -axis coordinate of p𝑇 is less than, equal to, or greater
than that of p𝐿 . The semi-static filter for Δ is:

YΔ = 5.27253154330999 10−12𝛿10Δ ,

𝛿Δ = max{𝛿𝑇 , 𝛿𝐿, |𝛽𝑇𝑥 − 𝛽𝐿𝑥 |}.

When generalizing orient2d to test the orientation of three points
p𝑇 , p𝐿 and p𝐸 , which are TPI, LPI and EXP points respectively, on

(a) (b) (c)

EXP LLI
LPI SEG

Fig. 4. The intersection between two intersecting triangles (except those
forming a valid simplicial complex) may manifest as a point (a), a segment
(b), or a convex polygon (c). The intersection points may be represented in
different types of implicit points and are connected to form the intersection
segments. We show only a subset of all possible combinations here.

EXP
LLI
LPI

(a) (b) (c)

(d) (e) (f) (g)
Fig. 5. Enumeration of all intersections between sub-simplices (vertices
and edges) of one triangle and another triangle. They can be classified into
three categories: (a) coplanar vertices, (b) crossing edges (in cyan), and (c~g)
coplanar edges (in green). We display the intersection points for all of them.

the 𝑌𝑍 plane, the expression of orient2d_YZ_TLE(p𝑇 , p𝐿, p𝐸) is
Δ/𝐷 = Δ/(𝑑𝑇𝑑𝐿), where Δ is:

Δ =(_𝑇𝑦 + 𝑑𝑇 (𝛽𝑇𝑦 − 𝑝𝐸𝑦)) (_𝐿𝑧 + 𝑑𝐿 (𝛽𝐿𝑧 − 𝑝𝐸𝑧))
− (_𝑇𝑧 + 𝑑𝐿 (𝛽𝑇𝑧 − 𝑝𝐸𝑧)) (_𝐿𝑦 + 𝑑𝑇 (𝛽𝐿𝑦 − 𝑝𝐸𝑦)) .

The signs of Δ, 𝑑𝑇 , and 𝑑𝐿 are evaluated to determine the sign of
the orientation. The semi-static filter for Δ is:

YΔ =1.7707333863081813 10−11𝛿11Δ ,

𝛿Δ =max{𝛿𝐿, 𝛿𝑇 , |𝛽𝐿𝑦 − 𝑝𝐸𝑦 |, |𝛽𝐿𝑧 − 𝑝𝐸𝑧 |,
|𝛽𝑇𝑦 − 𝑝𝐸𝑦 |, |𝛽𝑇𝑧 − 𝑝𝐸𝑧 |}.

Compared to indirect predicates [Attene 2020; Cherchi et al. 2020],
the semi-static filters for our predicates Δ typically have similar
constants Y0 and 𝑛 in the YΔ. But our 𝛿Δ term only contains the
differences between input coordinates. This distinction allows our
𝛿𝑛Δ to be significantly less than that in indirect predicates, making
our predicates more likely to succeed in the semi-static filter phase
and thus avoiding the need for expensive subsequent filters.

4 INTERSECTION RESOLUTION
Algorithm overview. Our algorithm builds upon the foundation

laid by [Cherchi et al. 2020, 2022], using our innovative predicates
and integrating key optimization techniques to enhance the paral-
lelism and speed up the algorithm. The algorithm can be conceptu-
ally divided into three steps: intersection detection, classification,
and elimination. In intersection detection, possibly intersecting tri-
angles are quickly found by an adaptive tree and confirmed by a
triangle-triangle intersection detection routine (Section 4.1). Fol-
lowing this, intersection classification is performed for each pair

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

165:6 • Jia-Peng Guo and Xiao-Ming Fu

of intersection triangles to identify the location and type of in-
tersections (Section 4.1). Once all intersections are identified, the
elimination step applies a constrained triangulation to all triangles
by treating intersections as constraints, thereby forming a valid
simplicial complex (Section 4.2). Details about the adaptive tree and
other implementation details are presented in Section 4.3. Addi-
tionally, our algorithm also includes some common preprocessing
routines, such as removing duplicate vertices and triangles and
deleting degenerate triangles, which we do not discuss further.

4.1 Intersection detection and classification
The triangle-triangle intersection (TTI) detection routine involves
performing orientation tests of two triangles to uncover all possi-
ble intersections. These intersections may include points (which
could be of types such as EXP, LLI, LPI, but not TPI), segments
(whose endpoints are defined by intersection points), and polygons
(formed by the segments) (see examples in Figure 4). Following this,
the TTI classification routine identifies the location and types of
the intersections by testing sub-simplices of one triangle against
those of the other (Figure 5). Finally, intersection points and seg-
ments are attached to the corresponding triangles for subsequent
triangulation.

4.1.1 Simplify intersection by LLI. Two edges from different tri-
angles (whether these triangles are coplanar or not) will intersect
to generate line-line intersection points ((b) and (d~g) in Figure 5),
which are commonly detected in real-world models. For example,
in the Thingi10k dataset, LLI points comprise approximately 21.4%
of all generated implicit points, with LPI and TPI points constitut-
ing about 57.4% and 21.2%, respectively. Hence, we construct LLI
implicit points to represent line-line intersection points rather than
constructing LPI implicit points with an auxiliary point [Cherchi
et al. 2020]. This reduces the computational burden and improves
the success rate of filters for subsequent predicates.

4.1.2 Locally deduplicate intersection points. Each newly generated
intersection point is assigned a unique index, which is used to ref-
erence it elsewhere. However, when multiple edges and triangles
intersect at the same point, duplicate intersection points (those with
identical geometry but different indices) are often generated. Re-
moving these duplicates is crucial to prevent disjointed connectivity
in the results.

In the classification step, only LLI and LPI points are constructed
and may coincide with existing EXP, LLI, and LPI points. We store
these points on the edges and sort them along the longest axis of
each edge instead of sorting all points lexicographically within a
global set [Cherchi et al. 2020]. In particular, to prevent race condi-
tions (which occur when multiple threads access shared resources
simultaneously in a parallel execution environment), it is necessary
to lock an edge when operating on it. This edge-oriented localization
has three main benefits:

(1) Sorting intersection points along edges breaks down the
global sorting problem into many smaller local problems,
reducing the scale of data for each sorting-related operation
by several orders of magnitude (Figure 6).

#V=1,119,739 #Int=1,279,353
#F=2,436,234 Time=4.31s

On Edges

On Segments

#Total=925,202
#Max=293

#Total=9,619
#Max=37

Fig. 6. We show the scale of intersection points, sorted along edges and
intersection segments, for one of the most complex models (ID.1368052) in
the Thingi10K dataset. We use histograms to show the distribution of the
number of intersection points on edges and intersection segments. “#Total”
is the total number of intersection points, and “#Max” is the maximum
number of intersection points on any edge or segment. The number of
vertices (#V), number of faces (#F), number of intersecting triangle pairs
(#Int), and the runtime of our algorithm (Time) are also shown in the figure.

(2) By sorting points along the longest axis of edges, we limit
comparisons to a single axis and avoid comparisons on a
possible degenerate axis.

(3) Although each edge must be locked to avoid race conditions,
new intersection points are typically generated on different
edges simultaneously in a parallel execution environment.
This means locking the edge does not significantly hinder
thread performance, thereby facilitating the algorithm’s par-
allel execution.

All these factors together substantially enhance the efficiency.
Sorting points facilitates a fast search to determine if identical

points exist, thereby avoiding duplicate intersection points stored
on the edge. When detecting a new intersection point, we check for
duplicates to decide whether to construct a new point or merge du-
plicates. Specifically, when detecting an LPI point at the intersection
of one edge and one triangle, if there is no geometrically identical
point on that edge, a new implicit point is constructed and added to
the edge; otherwise, the existing point is used to avoid duplicates.
Similarly, when detecting an LLI point at the intersection of two
edges, we check if geometrically identical points exist on the edges:

(1) If both edges share the same point (identical in geometry and
index), no construction or merge is required.

(2) If both edges have geometrically identical points with differ-
ent indices, these points are merged into the one with the
simpler type and smaller index. Among types, an EXP point
is simpler than an LLI point, which in turn is simpler than
an LPI point; the simpler type has priority over the smaller
index.

(3) If only one edge contains a geometrically identical point, it is
then shared with the edge where it was absent.

(4) If neither edge has a geometrically coincident point, a new
implicit point is constructed and shared between both edges.

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

Exact and Efficient Intersection Resolution for Mesh Arrangements • 165:7

Input

Output

Insert points inside triangle

Insert points on boundary edges Splitting tree

Fig. 7. Splitting a triangle by intersection points. The intersection points
within the triangle are first inserted (upper row), and the sorted intersection
points along the edges are sequentially inserted (bottom row). When the
inner intersection points are too much, the newly generated sub-triangles
are organized in a splitting tree (right), which is used to quickly locate points
to insert.

Ultimately, only one implicit point will survive and be used for
subsequent operations. Since each pair of edges intersecting at the
same point undergoes the above check-construct-merge process for
LLI points, only one point with the simplest type and smallest index
is retained across all edges, ensuring simplicity and uniqueness.

4.1.3 Efficiently propagate coplanar in-
tersections. Some intersection points be-
tween two coplanar triangles may lie
within another triangle. For example, in
the inset, the intersection points (shaded
in red) between the blue and green trian-
gles lie inside the purple triangle. How-
ever, since TTI detection and classification are conducted individu-
ally on pairs of triangles (e.g., blue-green, blue-purple, and green-
purple), these red points are not recorded as constrained points for
the purple triangles in the subsequent constrained triangulation. To
address it, for each triangle, we propagate the intersection points
from its coplanar edges to the triangle. Since points are already
sorted along edges and the overlapping portion between edges and
triangles has already been detected, we can efficiently traverse and
propagate points within the overlapping portion without any geo-
metric checks.

4.2 Intersection elimination
In this step, constrained triangulation is applied to each triangle
by treating intersection points and segments as constraints. A lin-
earized constrained 2D triangulation method [Livesu et al. 2022]
is extended to incorporate indirect predicates [Cherchi et al. 2022].
It first inserts intersection points to split triangles (Figure 7), then
inserts intersection segments as constrained segments following the
general process [Shewchuk and Brown 2015]: locating, removing,
and re-triangulating (Figure 8 (a)). During the locating phase, two
segments may intersect, meaning that three triangles intersect, cre-
ating a new TPI point as a constrained point. We extend the entire
process to incorporate our new implicit points and predicates and
simplify critical parts.

4.2.1 Simplify intersection locating process. Triangulating a triangle
𝑡 is fundamentally a 2D problem. However, extending the locating
process to incorporate the proposed predicates is not trivial. Instead
of relying on expensive and redundant 3D intersection tests to

(a) (b)

Fig. 8. Inserting a segment into a triangulation. (a) A segment (shaded in
purple) is inserted into a triangulation (top), the intersecting triangles are
removed (middle), and the void is re-triangulated by a linearized earcut
method [Livesu et al. 2022] (bottom). (b) A horizontal segment (shaded in
orange) is inserted into a triangulation, intersecting an existing constrained
segment (shaded in blue) and an existing TPI point (shaded in red). A new
TPI point is generated by intersecting two segments, splitting segments into
five segments (shaded in different colors) together with the existing TPI
point. Three horizontal segments are re-inserted, similar to (a).

v2

v0

vs

v1

vs

vn

vpvo

▲
■

▲

▲

■

■

▲

▲ ▲

△

△

□

□

◎

◎△

▲ ED-1
■ ED-2

△ ED-3
□ ED-4
◎ ED-5

(a) (b)
Fig. 9. An illustration of locating a point p in a node of a splitting tree.
(a) In the case of a node with three sub-nodes, by evaluating generalized
orient2d(v𝑠 , p, v𝑗) on P𝑡 , where 𝑗 = 0, 1, 2, the point is located in three pos-
sible positions, corresponding to end condition (ED) 1 to 2. (b) Similarly, for
a node with two sub-nodes, by evaluating generalized orient2d(v𝑠 , v𝑜 , p)
on P𝑡 , the point is located in four possible positions, corresponding to ED-3
to ED-5. Each end condition triggers an iterative location query in the cor-
responding child node until the node is a leaf node. Specifically, when p is
located on an edge in a node (corresponding to ED-1, ED-3, and ED-5), it
must also be located on an edge in the sub-nodes. In this case, we pass the
edge information to the subsequent sub-nodes to assist in locating p. The
location of p may conclude with end conditions ED-1 and ED-3 by solely
topological checks. However, for the remaining case ED-5, a generalized
orient2d(v𝑠 , v𝑜 , p) is still required.

locate intersections in 3D space [Cherchi et al. 2020], we utilize
the robustProject and the generalized orient2d to reduce the
locating process to a lower dimensional one. Unfortunately, the
generalized orient2d remains costly since it is applied to implicit
points. To this end, we carefully simplify the locating process and
reuse calculated results across the whole process, reducing the calls
to the generalized orient2d as much as possible.

Specifically, we apply robustProject to 𝑡 to find an orthogonal
2D plane where the projection of 𝑡 is not degenerate, denoted as P𝑡 .
Then, we compute the orientation O𝑡 of 𝑡 on the P𝑡 by the standard
orient2d(v0, v1, v2) predicate, where v0, v1, v2 are three oriented
vertices of 𝑡 and are projected to P𝑡 . O𝑡 may be either positive or
negative. By utilizing P𝑡 and O𝑡 , we locate a point in a splitting
tree (Figure 9) and pass the calculated orientation across nodes, thus

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

165:8 • Jia-Peng Guo and Xiao-Ming Fu

(a) (b) (c) (d) (e)

vbeg vend

ve0
ve1

vbeg

vi

vj

vend

vi vi

vj vj
vbeg vbeg vbeg

vendvendvend

vi

vj

enep en

ep

Fig. 10. Locating a segment 𝑔 = (vbeg, vend) in a triangulation. Without loss of generality, assuming O𝑡 is positive in this illustration, thus, the triangle vertices
are oriented in a counter-clockwise (CCW) direction. When determining the rotation direction in the initial step (a), we calculate orientation O𝑒0 and O𝑒1
for the points (vbeg, vend, v𝑒0) and (vbeg, vend, v𝑒1) , respectively. If both O𝑒0 and O𝑒1 are the same as O𝑡 (or neither matches O𝑡), we rotate clockwisely (or
counter-clockwisely). This applies to orange, purple, and blue triangles. The rotation process stops when O𝑒0 < 0 and O𝑒1 > 0, thus, it stops at the green
triangles. In the iterative step ((b)~(e)), we calculate the orientation Ooppo for points ((vbeg, vend, voppo)) , where voppo is the vertex (shaded in yellow) opposite
to the gate edge (shaded in red), such as v𝑖 in (b), v𝑗 in (c), and vend in (d). When Ooppo is positive (or negative), the next gate edge is the previous edge 𝑒𝑝 (or
the next edge 𝑒𝑛) of voppo. The iterative process stops when voppo is the vend, Ooppo = 0, or the gate edge is a constrained edge.

limiting the calls to the generalized orient2d to a maximum of one
or three times in a node with 2 or 3 sub-nodes.
Locating a segment includes an initial step to locate the first

triangle intersecting with the segment and subsequent iterative
steps to locate the remaining triangles. This process is illustrated
and detailed in Figure 10. In the initial step, we reduce the expected
number of calls to generalized orient2d to fewer than half the
minimal vertex valence of the segment’s end vertices. In the iterative
step, only one call to generalized orient2d is required to identify
each intersecting triangle.

4.2.2 Locally deduplicate TPI points. When inserting a segment,
it may intersect with a previously inserted segment. These two
segments must span at least three non-coplanar triangles, forming
an unidentified TPI point. Similarly, it might also intersect with
an existing TPI point. In both scenarios, it is split at the TPI point,
and the resulting sub-segments are then re-inserted (Figure 8 (b)).
Since the triangles are triangulated individually, duplicate TPI points
are often unavoidably created on different triangles and must be
deduplicated.

A TPI point is created by intersecting two intersection segments,
which is similar to creating an LLI point by intersecting two trian-
gle edges. Thus, we store TPI points on the intersection segments
along the longest axis of each intersection segment. The longest
axis is selected by applying longestAxis to the segment. Then, we
follow the similar check-construct-merge process to the LLI points
introduced in Section 4.1.2 to deduplicate TPI points. Locally sort-
ing and deduplicating TPI points also benefit from the advantages
mentioned in Section 4.1.2 and showcased in Figure 6. Moreover,
this sorting does not involve input points or previously detected
LLI and LPI points. All of these make sorting and deduplicating no
longer a bottleneck in this step.

4.2.3 Triangulation and synchronization. After locating and pos-
sibly splitting an intersection segment, the intersecting triangles
are removed, leaving two void polygons for triangulation. For de-
tails and terminology on the polygon triangulation method, see
[Livesu et al. 2022]. Here, we briefly introduce the method and a
new property. The polygons may contain dangling edges, holes, or
both, complicating the process. Livesu et al. [2022] address this by
extracting simple polygons using topological duplication of vertices
or edges. They prove that a simple polygon always contains an

internal ear, allowing for linear complexity triangulation by progres-
sively cutting these ears. We further introduce a new property: a TPI
vertex (except the extrema) is always convex and forms an internal
ear, as it results from the internal intersection of two constrained
segments, with its internal angle always less than 𝜋 . Thus, we can
cut all TPI vertices without geometric checks and the remaining ver-
tices as before. The property reduces the need for most generalized
orient2d checks on TPI points, which are the relatively expensive
predicates in our algorithm.
Finally, since all triangles are triangulated individually, we ap-

ply the synchronization method in [Cherchi et al. 2020] to ensure
consistent triangulation of overlapping polygon pockets between
coplanar triangles. This method establishes a global mapping from
the vertex indices of coplanar pockets to their triangulation, en-
suring unique and consistent triangulation between overlapping
pockets with identical vertex indices.

4.3 Implementation details
Adaptive tree. When building a BVH, three key considerations are

partitioning, splitting, and stopping criteria. Conventional methods
partition the node into a fixed number of children by splitting at
the node’s center, stopping when the node contains fewer than a
specified threshold of triangles [Cherchi et al. 2022; Park 2004; Sheng
et al. 2018]. In specific applications, heuristic methods are proposed
to select split points to simplify subproblems [Trettner et al. 2022].
In our case, it is crucial to avoid assigning triangles to multiple
nodes to prevent redundant intersection tests. To address this, We
introduce an adaptive strategy that considers both the partitioning
and stopping criteria.

Our strategy works as follows: given a split point, if the portion
of triangles assigned to both sides of the split point along one axis
is less than a specified adaptive threshold (e.g., 0.2), we partition the
node along that axis. Depending on the number of axes along which
the partitions occur, the node may be partitioned into eight, four, or
two sub-nodes. Partitioning stops when partition does not occur on
any axis or when the number of triangles in the node drops below
a specified split threshold (e.g., 400). While finding an optimal split
point to minimize triangles in leaf nodes is attractive, splitting at
the node’s center is already effective in balancing construction time
and intersection detection time.

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

Exact and Efficient Intersection Resolution for Mesh Arrangements • 165:9

#V=125,089 #Int=198,574
#F=253,057 Time=0.3s

#V=702,975 #Int=1,081,514
#F=1,422,454 Time=2.3s

#V=927,370 #Int=203,160
#F=1,859,572 Time=4.4s

#V=402,779 #Int=284,029
#F=809,622 Time=0.8s

#V=352,647 #Int=151,151
#F=652,888 Time=0.4s

#V=185,769 #Int=209,924
#F=383,988 Time=0.4s

#V=183,983 #Int=25,529
#F=366,170 Time=0.2s

#V=75,468 #Int=45,028
#F=150,540 Time=0.1s

Fig. 11. Industrial CAD models from GrabCAD [Stratasys 2024], containing numerous self-intersections. The intersections are resolved by our algorithm.

Ti
m

in
gs

Pe
ak

 m
em

or
y

Thingi10k dataset Stress-testing dataset

Time(s) Time ratio Time(s)

#Int #Int #Int

Time ratio Time(s) Time(s) Time ratio Time(s)

#Int #Int #Int

Time ratio Time(s)

#Int

Mem(MB)

#Int

Mem(MB)

#Int

Mem(MB)

#Int

Mem(MB)

#Int

Mem(MB)

#Int

Mem(MB)

Ours
[Cherchi et al. 2020]
[Zhou et al. 2016]

Fig. 12. Comparisons of timings and peak memory usage across our algorithm (green) and two competitors, [Cherchi et al. 2020] (blue) and [Zhou et al. 2016]
(red), evaluated on two datasets. The upper row shows the runtime distribution (Time vs. #Int) and the distribution of relative performance (Time ratio vs. #Int,
calculated as [Cherchi et al. 2020]/Ours and [Zhou et al. 2016]/Ours, respectively) by scatter plots. The overall runtime comparisons across three algorithms
are shown by bar charts, with corresponding runtime values annotated above each bar. The bottom row displays the peak memory distribution (Mem vs. #Int)
by scatter and violin plots. For clarity, all axes are displayed on a logarithmic scale.

Switch between exact arithmetics. In floating-point expansions
[Joldes et al. 2016], an exact number is represented as the sum of
multiple IEEE-754 64-bit floating-point numbers. The complexity
of multiplying two exact numbers in expansions is 𝑂 (𝑚𝑛), where
𝑚 and 𝑛 are counts of floating-point numbers composing the ex-
act numbers (also known as the length of expansions). Typically,
implicit point coordinates can be exactly represented by summing
a few floating-point numbers (mostly less than 6 in the Thingi10k
dataset), making multiplication in expansions faster than that in
rational arithmetic. However, multiplication in expansions may be-
come slower than that in rational arithmetic when𝑚 and 𝑛 become
large. Therefore, once we detect that the multiplication may be too
complex during evaluating predicates (e.g.,𝑚𝑛 >100), we switch
to rational arithmetic to continue evaluation. This heuristic strat-
egy has no adverse effects on simple models (it does not increase

the overall runtime of the Thingi10k dataset) but significantly re-
duces the runtime for extremely complex models. For example, the
runtime of model ID.101633 with and without this strategy is 310
seconds and 1186 seconds, respectively. The TPI point coordinates
of the model ID.101633 often exceed a length of 10 in floating-point
expansions.

Local cache. We cache the implicit expression of our implicit
points. Our algorithm exhibits good locality in two aspects: (1) we
sort and deduplicate implicit points on edges and segments sepa-
rately; (2) we triangulate triangles individually. Consequently, we
only cache the expressions within a restricted region and clear the
cache before entering the next one. This localized caching strategy
notably enhances efficiency without causing unacceptable memory
usage (Figure 12).

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

165:10 • Jia-Peng Guo and Xiao-Ming Fu

5 EXPERIMENTS
We implement our algorithm in C++ and conduct all experiments on
a PC with an Intel i5-13400F processor (2.5 GHz, 10 physical cores,
and 16 logical cores) and 32 GB RAM. Our implementation relies
on the parallel framework and concurrent data structures (e.g., con-
current vector) from Intel’s TBB. Since competitors provide parallel
implementations and our main contribution lies in parallelization,
we use our parallel implementation for most experiments and com-
parisons. For some models and results displayed in the figures, we
report the number of vertices (#V), number of faces (#F), and number
of intersecting triangle pairs (#Int). #Int is also used to indicate the
model’s complexity in our experiments. To facilitate reproduction,
verification, and further research, the code for this paper is available
at https://github.com/mangoleaves/OpenMeshCraft, and we provide
a benchmark model list and a cookbook of our predicates in the
supplementary material.

Datasets. We test our algorithm on the well-known Thingi10k
dataset [Zhou and Jacobson 2016]. We filter out models with at
least one intersection as our Thingi10k dataset and exclude the two
most challenging models (ID.101633 and ID.996816) for the sake
of a fair comparison (the statistics about the excluded models are
individually reported in Table 1). The total count of models in the
dataset is 4364. However, in the Thingi10k dataset, the number
of intersecting triangle pairs in models typically ranges from 101
to 105 and mostly falls below 104 (as shown in the left part of
Figure 12). This contrasts with the complexity of real industrial
models, which often range from 104 to 107 (Figure 11), indicating
a notable gap between the two. Therefore, we construct a more
complex stress-testing dataset. We randomly select one model from
the 4364 self-intersecting models, then make slight rotations (e.g.,
[−3◦, 3◦]) around three axes to obtain three rotated models, and
finally, merge these four models into one self-intersecting model.
We repeat the above operation to create 1000 models for our stress-
testing dataset. The complexity of resulting models ranges from
104 to 107 and mostly falls below 106 (as shown in the right part of
Figure 12). We validate our implementation by ensuring that our
results consistently exhibit the same number of vertices and faces
and Euler characteristics as those generated by competitors on the
two datasets above.

Competitors. We compare our algorithm with the two most re-
cent and publicly available algorithms [Cherchi et al. 2020; Zhou
et al. 2016]. We obtain the latest implementation of [Zhou et al.
2016] from libigl [Jacobson et al. 2018] (version 2.5.0 in the GitHub
repository), which has seen improved performance following an
upgrade to CGAL’s implementation of rational numbers [Hemmer
et al. 2023]. The latest implementation of [Cherchi et al. 2020] (com-
mit bf7eb71 in the GitHub repository), which integrates improve-
ment from [Livesu et al. 2022] and [Cherchi et al. 2022], is now 3~8
times faster than the original implementation, as shown in [Cherchi
et al. 2022]. The intersection resolution parts of both algorithms
(remesh_self_intersections and solveIntersections, respec-
tively) have the same problem settings as ours and are designed
to resolve intersections exactly. In our tests, our implementation
and Cherchi et al. [2020] succeed on all models while Zhou et al.

Thingi10k dataset

Stress-testing dataset

43s

83s

48s

95s

556s

1572s

Fig. 13. The proportion of time for each part of our algorithm relative to
the total time. The left figures display the time proportion across models,
sorted by the intersection elimination time proportion for easier viewing.
Meanwhile, the right pie charts show the time proportions of the whole
dataset.

0.05 0.1 0.2 0.3 0.5
Adaptive Threshold

20
50

10
0

20
0

40
0

10
00

Sp
lit

 T
hr

es
ho

ld

20.2 25.9 39.5 48.0 60.6
20.0 25.1 30.6 31.5 34.1
19.9 23.6 25.0 25.0 25.8
19.6 21.0 20.8 21.0 21.3
19.0 18.6 18.4 18.5 18.5
16.9 16.2 16.1 16.1 16.1

0.05 0.1 0.2 0.3 0.5
Adaptive Threshold

20
50

10
0

20
0

40
0

10
00

Sp
lit

 T
hr

es
ho

ld

209.5 188.4 201.1 213.5 249.3
209.1 187.5 194.2 193.8 212.1
208.6 186.1 187.2 185.7 197.1
210.8 184.2 178.8 180.5 188.4
213.6 182.1 177.6 178.6 184.3
218.6 203.6 203.1 204.8 207.4

20 40 60
Tree Construction Time (s)

180 200 220 240
Total Time (s)

Fig. 14. Time of tree construction (left) and overall runtime of our algorithm
(right) under various parameters of the adaptive tree. For comparison, with
the adaptive threshold set to 1 (i.e., a simple OcTree) and the split threshold
set to 1000, the tree construction time is 16.4 seconds, and the overall runtime
is 293.9 seconds.

[2016] fail on 40 models in the Thingi10k dataset and 46 models
in the stress-testing dataset. These issues are primarily caused by
runtime errors or exceeding the maximum memory limit (32 GB
in our experiments), so we exclude these models when comparing
with [Zhou et al. 2016].

5.1 Evaluations
Timings and memory. We evaluate our algorithm on two datasets

and analyze the runtime and peak memory usage through profiling.
The distributions of these metrics are presented in Figure 12. Our
algorithm exhibits nearly linear growth in runtime and memory
usage as model complexity increases. On the Thingi10k dataset,
each model’s runtime is under 10 seconds, with only 18 models
exceeding 1 second and an average runtime of 0.04 seconds across
the dataset. For the stress-testing dataset, only 6 models require
more than one minute, with an overall average runtime of 2.23
seconds. Regarding memory usage, peak usage reaches 3 GB and
21 GB on the Thingi10k and stress-testing datasets, with average
usages of 53 MB and 960 MB, respectively. Our algorithm showcases
the scalability of challenging models.

Performance breakdown. Our algorithm can be divided into three
individual parts: (1) preprocessing routines and tree construction

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

https://github.com/mangoleaves/OpenMeshCraft

Exact and Efficient Intersection Resolution for Mesh Arrangements • 165:11

Time(s)

Detect & Classify Eliminate Total

Fig. 15. Comparisons between global and local deduplication strategies on
the Thingi10k dataset.

(PP.); (2) intersection detection and classification (IC.); (3) intersec-
tion elimination (IE.). In Figure 13, we show the time proportion for
each part relative to the total time. It reveals that as the complexity
of the model increases, the algorithm’s bottleneck shifts from the
intersection detection and classification step (shown in the upper)
to the intersection elimination step (shown in the bottom).

Speedup ratio

Threads

phyical cores logical cores

Parallelism. We evaluate our
algorithm with varying numbers
of threads, from 1 to 16. For our
serial execution (i.e., using only
one thread), it takes about 15min-
utes on the Thingi10k dataset and
262 minutes on the stress-testing
dataset. In the inset, we present
the speedup ratio of our algo-
rithm with different numbers of threads compared to serial exe-
cution. The observed speedup is notable, especially for more chal-
lenging models, though it does not scale linearly due to memory
bandwidth limitations, synchronization overhead, and paralleliza-
tion costs.

Parameters of adaptive tree. In the adaptive tree, two parameters
(the split and adaptive threshold) affect our algorithm’s tree construc-
tion time and overall runtime. Our evaluations on the Thingi10k
dataset, as shown in Figure 14, explore various combinations of
these parameters. Setting the adaptive threshold to 1 makes the
adaptive tree equivalent to a simple OcTree. For this, we only test
with a split threshold of 1000, as smaller split thresholds prove too
time-consuming due to too many redundant intersection tests. The
analysis shows that although a smaller adaptive threshold and a
larger split threshold effectively prevent over-partition and decrease
the tree construction time, they increase the number of triangles
in leaf nodes and, consequently, the time of intersection detection.
Therefore, we choose the parameters with an adaptive threshold of
0.2 and a split threshold of 400.

Ablation studies. We first compare the local and global dedupli-
cation strategies on the Thingi10k dataset. The local strategy is
detailed in Sections 4.1.2 and 4.2.2, and the global strategy sorts all
points lexicographically within a global set, as used by [Cherchi
et al. 2020]. We test our algorithm across four settings, comprising
the combinations of serial or parallel execution with either local or
global deduplication strategy (Figure 15). For serial execution, the
local strategy proves faster than the global one due to its reduced

Thingi10k dataset Stress-testing dataset

Fig. 16. The ratio of 𝛿𝐼 to 𝛿𝑂 in different datasets. We show the ratios via
statistical histograms and assign gradient colors to facilitate distinction.

Thingi10k dataset Stress-testing dataset

Fig. 17. The number of times that pointCompare and generalized orient2d
are called with various combinations of implicit points. We abbreviate these
two predicates as compare and orient. The combination of points is abbre-
viated by concatenating their respective abbreviations (“S” for LLI, “L” for
LPI, and “T” for TPI). The explicit point is omitted in these abbreviations.
For instance, when the input includes two LLI points (and despite how
many explicit points), we label this combination as “SS”. We only display
combinations in which the proportion of calls exceeds 3% and group all
other combinations under the “Other” category.

sorting scale and complexity. For global strategy, the parallel ex-
ecution shows less than a twofold speedup compared to its serial
counterpart. In contrast, parallel execution using the local strategy
demonstrates a notable speedup, as the local strategy effectively
enhances parallelism by breaking down the sorting problem.

Then, we perform ablation on the simplified intersection location
algorithm (Section 4.2.1). The ablation increases the time for the
elimination step from 48 seconds to 128 seconds on the Thingi10k
dataset, with the total time rising from 177 seconds to 258 seconds.
For the stress-testing dataset, the elimination step’s time increases
from 1572 seconds to 5410 seconds, and the total time rises from 2230
seconds to 6086 seconds. As model complexity increases, the propor-
tion of time spent on the elimination step also grows, demonstrating
the increasing benefits brought by the algorithm.

Predicates. For semi-static filters of generated implicit points in
two datasets, we compare the magnitude of inputs under indirect
predicates and indirect offset predicates. We refer to the magnitude
of inputs for all implicit points under the indirect predicates as 𝛿𝐼 and
refer to their counterparts under the indirect offset predicates as 𝛿𝑂 .
As shown in Figure 16, 𝛿𝐼 is generally several orders of magnitude
higher than 𝛿𝑂 , leading to larger error bounds in semi-static filters
under indirect predicates. We further count the number of times that
pointCompare and generalized orient2d are called with various
combinations of implicit points. We do not differentiate based on
projection dimensions but focus on combinations of implicit points.

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

165:12 • Jia-Peng Guo and Xiao-Ming Fu

Th
ingi10k dataset

Stress-testing dataset

[Cherchi et al. 2020]
Ours

SSF
SSF DF

DF EX
EX

pointCompare orient2d
T SS LL TT T SS LL TT SSS LLL TTT

T SS LL TT T SS LL TT SSS LLL TTT

Fig. 18. The success rates of indirect predicates used in [Cherchi et al. 2020]
(shaded in red) and our indirect offset predicates (shaded in green) at various
filtering stages for different combinations of points. The abbreviations for the
combinations of points follow the same convention described in Figure 17.
The filtering stages contain semi-static filters (SSF), dynamic filters (DF),
and floating-point expansions (EX), shaded in light, normal, and dark colors,
respectively.

The results in Figure 17 demonstrate that LLI points participate
extensively in predicate calls. Finally, we analyze the success rates
of predicates at various filtering stages for different combinations
of implicit points, showcasing the combinations with higher call
frequencies in Figure 18. The results reveal that under the same
combinations, indirect offset predicates tend to pass filter validation
at earlier stages. Combinations including LLI points also pass the
filter earlier than those containing LPI points. By introducing new
implicit points and predicates, we achieve a total time reduction of
35% to 70% across two datasets.

5.2 Comparisons
Comparison of timings and memory. We conduct a comparison

of runtime and memory usage between our algorithm and those
proposed by [Zhou et al. 2016] and [Cherchi et al. 2020], with the
results detailed in Figure 12. For the overall runtime, our algorithm
outperforms [Cherchi et al. 2020] by approximately 15 times on
the Thingi10k dataset and 30 times on the stress-testing dataset
and outperforms [Zhou et al. 2016] by about 56 times and 75 times
on these respective datasets. For runtime on each model, our algo-
rithm is slower than [Cherchi et al. 2020] on only 45 models in the
Thingi10k dataset. These models are extremely simple, with fewer
than 100 intersecting triangle pairs, and their total runtime is merely
0.06 seconds. Our algorithm’s memory usage is comparable to that
of [Cherchi et al. 2020] and is much less than that of [Zhou et al.
2016]. In summary, our algorithm demonstrates superior runtime
performance across both datasets, and its superiority is especially ev-
ident in more complex and challenging models. Moreover, our serial
implementation is also 2.8 times faster than [Cherchi et al. 2020]’s
parallel implementation on the Thingi10k dataset and 4 times faster

Table 1. Statistics of the ten most challenging models in the Thingi10k
dataset. We rank models based on the scale of intersections and select
the top 10 most challenging models. We then sequentially present the
runtime and memory usage for all methods in the format “Ours/[Cherchi
et al. 2020]/[Zhou et al. 2016]”. Moreover, we show the proportion of the
comparison methods’ data compared to our method’s data, indicated as
“Ratio of [Cherchi et al. 2020]to ours/Ratio of [Zhou et al. 2016] to ours”. “F”
in the table indicates the failure of the algorithm.

Model ID Runtime(s) Runtime ratio Memory (MB) Memory ratio

252784 4.1/68.6/447.5 16.7/109.1 2395/1260/13753 0.5/5.7
101633 310.3/F/2721.0 F/8.8 1691/F/9170 F/5.4
55928 2.9/61.6/352.1 21.2/121.4 724/441/5581 0.6/7.7
1368052 4.3/164.7/452.8 38.3/105.3 3218/1968/15143 0.6/4.7
996816 253/2865.3/F 11.3/F 21872/15597/F 0.7/F
498461 1.0/15.6/101.2 15.6/101.18 538/270/2768 0.5/5.1
338910 0.6/5.5/67.9 9.2/113.25 535/246/2732 0.5/5.1
252785 0.8/16.3/67.7 20.4/84.6 475/271/2537 0.6/5.4
498460 0.5/10.7/70.1 21.4/140.2 488/264/2311 0.5/4.7
242236 0.6/15.7/168.8 26.2/281.3 540/600/2744 1.1/5.1

on the stress-testing dataset. This highlights our contributions in
both reducing algorithmic complexity and enhancing parallelism.

Performance across varying complexities. In Figure 20, we com-
pare the performance of our algorithm with [Cherchi et al. 2020]
across models of varying complexities. For simpler models, the
computational hotspots are primarily in preprocessing and intersec-
tion detection, resulting in a relatively small speed advantage for
our algorithm. As model complexity increases, the computational
hotspots shift towards intersection classification and elimination,
where our algorithm’s superiority becomes increasingly apparent,
often achieving speed-ups of an order of magnitude or more. In
Figure 19, we categorize the models into five groups based on the
runtime of our algorithm on them. From the simplest group to
the most challenging group, the speed of our algorithm relative
to [Cherchi et al. 2020] increases from 4 times to 30 times. We list
the statistics for the ten most challenging models in the Thingi10k
dataset, arranged according to models’ complexities, in Table 1. The
table reveals a conclusion consistent with the analysis above.

6 CONCLUSION AND DISCUSSION
We propose an approach to significantly enhance the efficiency of
exact intersection resolution. The key contributions include a new
concept of geometric predicates, a new type of implicit point, and
localization and dimension reduction techniques for sorting, dedu-
plicating, and locating the intersections. Rigorous testing against
state-of-the-art algorithms demonstrates superior performance im-
provement, increasing speed by about 15~30 times. Statistical data
analysis and detailed experiments validate the utility of our contri-
butions, collectively making our algorithm a promising solution for
intersection resolution in mesh arrangements.

Triangulation quality. We adopt the simple and efficient linearized
earcut algorithm for triangulation. In contrast to our option, previ-
ous works [Attene 2014; Barki et al. 2015; Zhou et al. 2016] prefer
constrained Delaunay triangulation (CDT) [Shewchuk and Brown
2015] to avoid poorly shaped triangles. A simple comparison be-
tween earcut triangulation and CDT is shown in Figure 21. Both
triangulations have poorly shaped triangles. Therefore, improving

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

Exact and Efficient Intersection Resolution for Mesh Arrangements • 165:13
Th

in
gi

10
k

da
ta

se
t

St
re

ss
-t

es
ti

ng
 d

at
as

et

Fig. 19. Comparisons between our algorithm’s runtime𝑇𝑂 andCherchi et al. [2020]’s runtime𝑇𝐹 on the two datasets across varying complexities. Themodels are
grouped into five categories based on our algorithm’s runtime. For the Thingi10k dataset, the groups are [0𝑠, 0.01𝑠), [0.01𝑠, 0.1𝑠), [0.1𝑠, 0.5𝑠), [0.5𝑠, 1𝑠), [1𝑠, +∞]
from left to right in the upper row. For the stress-testing dataset, the groups are [0𝑠, 1𝑠), [1𝑠, 5𝑠), [5𝑠, 10𝑠), [10𝑠, 50𝑠), [50𝑠, +∞] from left to right in the lower
row. The horizontal axis represents the ratio of our algorithm’s runtime to [Cherchi et al. 2020]’s runtime, i.e., 𝑇𝑂/𝑇𝐹 , with a lower value indicating that
our algorithm is faster. The left plots display the frequency corresponding to the runtime ratio, while the right bars illustrate the total runtime of the two
algorithms within each group. The numbers above the bars are the runtime in seconds.

Time ratio

#Int

Fig. 20. Performance comparison of our algorithm with [Cherchi et al. 2020]
across models of varying complexities. We present a scatter plot showing the
ratio of the runtime of our algorithm to [Cherchi et al. 2020] vs. the number
of intersecting triangle pairs. Each scatter point’s radius is proportional to
its corresponding runtime, with point colors mapped from red through blue
to green based on the runtime.

[Zhou et al. 2016] Ours

AR=1.0 10.0

Fig. 21. Comparing the constrained Delaunay triangulation in [Zhou et al.
2016] with the earcut triangulation in our algorithm. Both triangulation
results have 172 triangles. We calculate the aspect ratio (AR) for all triangles
and map the aspect ratios to colors (the color bar is shown in the upper
right corner). We zoom out the parts with poorly shaped triangles.

triangulation quality while ensuring efficiency is one of our future
works.

Implicit point and predicates. The complexity of TPI points re-
mains a challenge, with low success rates in filters containing TPI
points (Figure 18) and computational bottlenecks due to floating-
point expansion calculations on TPI points. Nehring-Wirxel et al.
[2021] limit input precision and round floating-point numbers to
a fraction of integers to maintain the precision of triplet plane in-
tersection points’ coordinates within a lower range, thus speeding
up computations. Yet, to the best of our knowledge, no similar
feature has been found for implicit points under IEEE-754 double-
precision inputs. Simplifying implicit points and their associated
computations remains a challenging and interesting problem for fu-
ture research. Nevertheless, the proposed indirect offset predicates
may enhance the efficiency of existing algorithms (e.g., conformal
meshing [Diazzi and Attene 2021]), especially for those who do
not rely on too complex implicit points, like constrained Delaunay
triangulation [Diazzi et al. 2023].

Specific applications. Specific applications might impose further
assumptions or constraints and develop tailored acceleration strate-
gies based on their unique characteristics [Douze et al. 2017; Sheng
et al. 2018; Trettner et al. 2022]. For example, a boolean algorithm
might assume that triangles are derived from 𝑁 solids or piecewise-
constant integer generalized winding number (PWN) meshes and
tailor pruning strategies to the specifics of boolean operations. These
typically do not conflict with the basic problem we are addressing.
Therefore, our algorithm, developed for the general purpose, is
adaptable and may be improved to fit new problem settings.

Iterative operations. Iterative operations are required by some
applications, meaning that the algorithm’s output serves as part of
the input for the next operations. Our current implementation does
not adequately support this requirement, as it only accepts floating
point numbers as input. This necessitates rounding the output of
our algorithm before it can be reused as input, leading to numerical
errors. Modifying our algorithm to accept implicit points as input

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

165:14 • Jia-Peng Guo and Xiao-Ming Fu

is possible. This would involve extending the orient3d predicate
to support implicit points [Attene 2020] for detecting intersections
and using explicit geometric primitives that construct input im-
plicit points to construct new ones during classifying intersections.
The only modification in the triangulation would be treating each
triangle’s input vertices as implicit points. Our algorithm can be
extended to support iterative operations without introducing any
new intersection point types, predicates, or techniques.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their construc-
tive suggestions and comments. This work is partially supported
by the National Natural Science Foundation of China (62272429).
Xiao-Ming Fu is a USTC Tang Scholar.

REFERENCES
Marco Attene. 2014. Direct repair of self-intersecting meshes. Graphical Models 76, 6

(2014), 658–668.
Marco Attene. 2020. Indirect Predicates for Geometric Constructions. Comput. Aided

Des. 126 (2020), 102856.
Marco Attene, Marcel Campen, and Leif Kobbelt. 2013. Polygon Mesh Repairing: An

Application Perspective. ACM Comput. Surv. 45, 2 (2013), 1–33.
Marco Attene, Marco Livesu, Sylvain Lefebvre, Thomas Funkhouser, Szymon

Rusinkiewicz, Stefano Ellero, Jonàs Martínez, and Amit Haim Bermano. 2018. Design,
representations, and processing for additive manufacturing. Vol. 10. Springer.

Hichem Barki, Gaël Guennebaud, and Sebti Foufou. 2015. Exact, robust, and efficient
regularized Booleans on general 3D meshes. Computers & Mathematics with Appli-
cations 70, 6 (2015), 1235–1254.

Amit H Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the
art in methods and representations for fabrication-aware design. Comput. Graph.
Forum 36, 2 (2017), 509–535.

Gilbert Bernstein and Don Fussell. 2009. Fast, Exact, Linear Booleans. Comput. Graph.
Forum 28, 5 (2009), 1269–1278.

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon
mesh processing. CRC press.

Mario Botsch, Mark Pauly, Christian Rossl, Stephan Bischoff, and Leif Kobbelt. 2006.
Geometric Modeling Based on Triangle Meshes. In ACM SIGGRAPH 2006 Courses
(Boston, Massachusetts) (SIGGRAPH ’06). 1–es.

Mario Botsch and Olga Sorkine. 2007. On linear variational surface deformation
methods. IEEE. T. Vis. Comput. Gr. 14, 1 (2007), 213–230.

Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. 1998. Interval Arithmetic
Yields Efficient Dynamic Filters for Computational Geometry. In Proc. Annu. Symp.
Comput. Geom. (SCG ’98). 165–174.

Hervé Brönnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoffmann,
Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2024. 2D and 3D Linear Geometry
Kernel. In CGAL User and Reference Manual (5.6.1 ed.). CGAL Editorial Board.
https://doc.cgal.org/5.6.1/Manual/packages.html#PkgKernel23

Marcel Campen and Leif Kobbelt. 2010. Exact and Robust (Self-)Intersections for
Polygonal Meshes. Comput. Graph. Forum 29, 2 (2010), 397–406.

Siu-Wing Cheng, Tamal Krishna Dey, Jonathan Shewchuk, and Sartaj Sahni. 2013.
Delaunay mesh generation. CRC Press Boca Raton.

Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and
robust mesh arrangements using floating-point arithmetic. ACM Trans. Graph. 39, 6
(2020), 1–16.

Gianmarco Cherchi, Fabio Pellacini, Marco Attene, and Marco Livesu. 2022. Interactive
and Robust Mesh Booleans. ACM Trans. Graph. 41, 6 (2022), 1–14.

Olivier Devillers, Sylvain Lazard, and William Lenhart. 2018. 3D Snap Rounding. In
Proc. Annu. Symp. Comput. Geom. 1–14.

Olivier Devillers and Sylvain Pion. 2003. Efficient Exact Geometric Predicates for
Delaunay Triangulations. Proc. 5th Workshop Algorithm Eng. Exper., 37–44.

Lorenzo Diazzi and Marco Attene. 2021. Convex polyhedral meshing for robust solid
modeling. ACM Trans. Graph. 40, 6 (2021), 1–16.

Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene. 2023. Constrained
Delaunay Tetrahedrization: A Robust and Practical Approach. ACM Trans. Graph.
42, 6 (2023), 1–15.

Matthijs Douze, Jean-Sébastien Franco, and Bruno Raffin. 2017. QuickCSG: Fast Arbi-
trary Boolean Combinations of N Solids. https://doi.org/10.48550/arXiv.1706.01558

S Fortune. 1999. Vertex-Rounding a Three-Dimensional Polyhedral Subdivision. Discrete
& Computational Geometry 22, 4 (1999), 593–618.

Steven Fortune and Christopher J. Van Wyk. 1993. Efficient Exact Arithmetic for
Computational Geometry. In Proc. Annu. Symp. Comput. Geom. (SCG ’93). 163–172.

Steven Fortune and Christopher J. Van Wyk. 1996. Static analysis yields efficient exact
integer arithmetic for computational geometry. ACM Trans. Graph. 15, 3 (1996),
223–248.

Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra. 2023. Number Types.
In CGAL User and Reference Manual (5.6 ed.). CGAL Editorial Board. https://doc.
cgal.org/5.6/Manual/packages.html#PkgNumberTypes

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 1–14.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/

Mioara Joldes, Olivier Marty, Jean-Michel Muller, and Valentina Popescu. 2016. Arith-
metic Algorithms for Extended Precision Using Floating-Point Expansions. IEEE
Trans. Comput. 65, 4 (2016), 1197–1210.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big
CAD Model Dataset for Geometric Deep Learning. (2019), 9593–9603.

David H. Laidlaw, W. Benjamin Trumbore, and John F. Hughes. 1986. Constructive
Solid Geometry for Polyhedral Objects. SIGGRAPH Comput. Graph. 20, 4 (1986),
161–170.

Bruno Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate
Construction Kit (PCK). Comput. Aided Des. 72 (2016), 3–12.

M. Livesu, G. Cherchi, R. Scateni, and M. Attene. 2022. Deterministic Linear Time
Constrained Triangulation using Simplified Earcut. IEEE. T. Vis. Comput. Gr. 28, 12
(2022), 5172–5177.

Marco Livesu, Stefano Ellero, Jonàs Martínez, Sylvain Lefebvre, and Marco Attene. 2017.
From 3D models to 3D prints: an overview of the processing pipeline. Comput.
Graph. Forum 36, 2 (2017), 537–564.

Pion Meyer. 2008. FPG A code generator for fast and certified geometric predicates.
Real Numbers and Computers (2008).

Julius Nehring-Wirxel, Philip Trettner, and Leif Kobbelt. 2021. Fast Exact Booleans for
Iterated CSG using Octree-Embedded BSPs. Comput. Aided Des. 135 (2021), 103015.

Sang C Park. 2004. Triangular mesh intersection. The Vis. Comput. 20 (2004), 448–456.
Bin Sheng, Bowen Liu, Ping Li, Hongbo Fu, Lizhuang Ma, and Enhua Wu. 2018. Accel-

erated robust Boolean operations based on hybrid representations. Comput. Aided
Geom. Des. 62 (2018), 133–153.

Johnathan Richard Shewchuk. 1996. Robust Adaptive Floating-Point Geometric Predicates.
Association for Computing Machinery, 141–150.

Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and
Fast Robust Geometric Predicates. Discrete Comput. Geom. 18, 3 (1997), 305–363.

Jonathan Richard Shewchuk and Brielin C. Brown. 2015. Fast segment insertion and
incremental construction of constrained Delaunay triangulations. Computational
Geometry 48, 8 (2015), 554–574.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Software 41, 2 (2015), 1–36.

Olga Sorkine. 2006. Differential representations for mesh processing. Comput. Graph.
Forum 25, 4 (2006), 789–807.

Stratasys. 2024. GrabCAD. https://grabcad.com/library
Philip Trettner, Julius Nehring-Wirxel, and Leif Kobbelt. 2022. EMBER Exact Mesh

Booleans via Efficient & Robust Local Arrangements. ACM Trans. Graph. 41, 4
(2022), 1–15.

Charlie C.L. Wang and Dinesh Manocha. 2013. Efficient Boundary Extraction of BSP
Solids Based on Clipping Operations. IEEE. T. Vis. Comput. Gr. 19, 1 (2013), 16–29.

Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua
Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. 2013. Cost-effective Printing of
3D Objects with Skin-Frame Structures. ACM Trans. Graph. 32, 5 (2013), 1–10.

Z. Zheng, X. Gao, Z. Pan,W. Li, P. S. Wang, G.Wang, and K.Wu. 2024. Visual-Preserving
Mesh Repair. IEEE Trans Vis Comput Graph PP (2024).

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-
ments for solid geometry. ACM Trans. Graph. 35, 4 (2016), 1–15.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

Afra Zomorodian and Herbert Edelsbrunner. 2000. Fast software for box intersections.
In Proc. Annu. Symp. Comput. Geom. 129–138.

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

https://doc.cgal.org/5.6.1/Manual/packages.html#PkgKernel23
https://doi.org/10.48550/arXiv.1706.01558
https://doc.cgal.org/5.6/Manual/packages.html#PkgNumberTypes
https://doc.cgal.org/5.6/Manual/packages.html#PkgNumberTypes
https://libigl.github.io/
https://grabcad.com/library

	Abstract
	1 Introduction
	2 Related work
	3 Offset Indirect Predicates
	3.1 Point Representation
	3.2 Point Comparison and Orientation

	4 Intersection Resolution
	4.1 Intersection detection and classification
	4.2 Intersection elimination
	4.3 Implementation details

	5 Experiments
	5.1 Evaluations
	5.2 Comparisons

	6 Conclusion and Discussion
	References

