
Exact and Efficient Intersection Resolution for Mesh Arrangements —
Supplements
JIA-PENG GUO and XIAO-MING FU∗, University of Science and Technology of China, China

CCS Concepts: • Computing methodologies → Shape modeling.

Additional Key Words and Phrases: mesh arrangements, intersection reso-
lution, constrained triangulation, geometric predicates

ACM Reference Format:
Jia-Peng Guo and Xiao-Ming Fu. 2024. Exact and Efficient Intersection Res-
olution for Mesh Arrangements — Supplements. ACM Trans. Graph. 43, 6,
Article 165 (December 2024), 2 pages. https://doi.org/10.1145/3687925

1 ARITHMETICS AND CODE GENERATION
In the main content of the paper, we introduce the mathematical ex-
pressions for implicit points and part of the indirect offset predicates.
In this supplementary, we explain how to use arithmetic filtering
techniques to quickly and exactly evaluate predicates and provide
details on generating code for this evaluation.

We briefly review the process of evaluating indirect offset predi-
cates that receive any combination of explicit and implicit points.
We first evaluate the terms of the implicit points’ expression, 𝛽+_/𝑑 ,
and determine the sign of 𝑑 . Next, using the explicit points’ coor-
dinates and the implicit points’ evaluated values, we evaluate the
predicate Λ = Δ/𝐷 and determine the sign of Δ. Here, 𝐷 is the prod-
uct of all 𝑑 values for the implicit points, and its sign is determined
by the previously determined signs of 𝑑 .

We use a three-stage arithmetic filtering model to determine the
signs of 𝑑 and Δ in the above process: floating-point arithmetic
(semi-static filtering), interval arithmetic (dynamic filtering), and
floating-point expansion arithmetic (exact). In the semi-static filter-
ing stage, a static numerical error analysis is applied to the expres-
sion of implicit points and predicates to obtain the static numerical
error bounds (Y0) for results such as _, 𝑑 , and Δ [Meyer 2008]. Briefly
introducing the analysis, it assumes the value bound of each input
(e.g., coordinates of explicit points and coordinates involved in the
construction of implicit points) to be 1 and the numerical error of
each input to be 0, and then propagating the value bounds and errors
according to the computation process of the expression, resulting
in the final numerical error bounds for results. Automated analy-
sis tools are provided in previous works [Attene 2020; Lévy 2016;
Meyer 2008] and in our open-source project, too. After obtaining the
static error bound Y0, semi-static filtering scales the Y0 to the actual
∗The corresponding author

Authors’ address: Jia-Peng Guo, gjp171499@mail.ustc.edu.cn; Xiao-Ming Fu, fuxm@
ustc.edu.cn, University of Science and Technology of China, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/12-ART165 $15.00
https://doi.org/10.1145/3687925

error bound Y based on the actual value bounds 𝛿 of inputs, typi-
cally resulting in an expression of the form Y = Y0𝛿𝑛 . Finally, if the
magnitude of the value calculated using floating-point arithmetic is
greater than the actual error, the sign of the value is guaranteed to
be accurate. Otherwise, the next stages are used to determine the
sign.
In the latter two stages, interval arithmetic [Brönnimann et al.

1998; Hemmer et al. 2023] and floating-point expansion arithmetic [Lévy
2016] are used to compute the expression and reliably determine
the sign of the result. The former computes the possible intervals
within which the intermediate and final results lie and checks if the
result interval’s sign is unambiguous. The latter uses floating-point
expansion to exactly represent all intermediate and final results,
allowing for an accurate determination of the result’s sign.

We convert the three-stage arithmetic filtering process for implicit
points and predicates from mathematical expressions into C++ code.
The mathematical expressions of implicit points are introduced in
the main content of the paper, and the mathematical expressions
of all used predicates are listed in Section 2 and 3. By expanding
the mathematical expressions into a series of binary operations,
we can directly convert them into floating-point arithmetic code.
After the floating-point computation is completed, we evaluate the
maximal magnitude of the inputs, scale the error bound obtained
by the automated analysis tool to the actual error bound, and deter-
mine the sign by comparing the result value with the actual error
bound. Similarly, by using interval number types and floating-point
expansion types with overloaded operators, we can directly convert
the expressions into interval arithmetic code and floating-point ex-
pansion arithmetic code, then determine the sign of the result after
the computation is complete. We develop this conversion tool based
on Attene’s tool [Attene 2020] and provide it in our open-source
project.

2 GENERALIZED ORIENT2D
We list the expression and semi-static filters for the generalized
orient2d predicates with different combinations of implicit points
in indirect offset predicates. We only display predicates on the or-
thogonal plane 𝑋𝑌 since the expression and filters are essentially
the same across different planes. We group combinations of implicit
points based on how many implicit points are contained in the
combination. Combinations containing 1, 2, or 3 implicit points are
abbreviated as “IEE”, “IIE”, and “III”, respectively, where “I” repre-
sents implicit points and “E” represents explicit points. “I” can be
replaced with specific types of implicit points (LLI as “S”, LPI as “L”,
and TPI as “T”) to represent specific implicit point combinations.
Predicates with the same number of implicit points have the same
expressions but different filters.

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

HTTPS://ORCID.ORG/0009-0009-0073-7399
HTTPS://ORCID.ORG/0000-0001-8479-0107
https://doi.org/10.1145/3687925
https://orcid.org/0009-0009-0073-7399
https://orcid.org/0000-0001-8479-0107
https://doi.org/10.1145/3687925

165:2 • Jia-Peng Guo and Xiao-Ming Fu

orient2d_XY_IEE(𝑝𝐼1, 𝑝𝐸2, 𝑝𝐸3) = sign(Δ)sign(𝑑𝐼1)

Δ =(𝑑𝐼1 (𝛽𝐼1𝑥 − 𝑝𝐸3𝑥) + _𝐼1𝑥) (𝑝𝐸2𝑦 − 𝑝𝐸3𝑦)
− (𝑑𝐼1 (𝛽𝐼1𝑦 − 𝑝𝐸3𝑦) + _𝐼1𝑦) (𝑝𝐸2𝑥 − 𝑝𝐸3𝑥)

𝛿Δ =max{𝛿𝐼 , |𝛽𝐼1𝑥 − 𝑝𝐸3𝑥 |, |𝛽𝐼1𝑦 − 𝑝𝐸3𝑦 |
|𝑝𝐸2𝑥 − 𝑝𝐸3𝑥 |, |𝑝𝐸2𝑦 − 𝑝𝐸3𝑦 |}

YΔ𝑆𝐸𝐸 =8.881784197001255 10−15𝛿4Δ
YΔ𝐿𝐸𝐸 =3.197724203485299 10−14𝛿5Δ
YΔ𝑇𝐸𝐸 =1.0409451078885486 10−12𝛿8Δ

orient2d_XY_IIE(𝑝𝐼1, 𝑝𝐼2, 𝑝𝐸3) = sign(Δ)sign(𝑑𝐼1)sign(𝑑𝐼2)

Δ =(𝑑𝐼1 (𝛽𝐼1𝑥 − 𝑝𝐸3𝑥) + _𝐼1𝑥) (𝑑𝐼2 (𝛽𝐼2𝑦 − 𝑝𝐸3𝑦) + _𝐼2𝑦)
− (𝑑𝐼1 (𝛽𝐼1𝑦 − 𝑝𝐸3𝑦) + _𝐼1𝑦) (𝑑𝐼2 (𝛽𝐼2𝑥 − 𝑝𝐸3𝑥) + _𝐼2𝑥)

𝛿Δ =max{𝛿𝐼1, 𝛿𝐼2, |𝛽𝐼1𝑥 − 𝑝𝐸3𝑥 |, |𝛽𝐼1𝑦 − 𝑝𝐸3𝑦 |,
|𝛽𝐼2𝑥 − 𝑝𝐸3𝑥 |, |𝛽𝐼2𝑦 − 𝑝𝐸3𝑦 |}

YΔ𝑆𝑆𝐸 =5.684341886080809 10−14𝛿6Δ
YΔ𝐿𝑆𝐸 =1.918578143578212 10−13𝛿7Δ
YΔ𝑇𝑆𝐸 =5.314859663485564 10−12𝛿10Δ
YΔ𝐿𝐿𝐸 =6.750832531876594 10−13𝛿8Δ
YΔ𝑇𝐿𝐸 =1.7707333863081813 10−11𝛿11Δ
YΔ𝑇𝑇𝐸 =4.189644187135872 10−10𝛿14Δ

orient2d_XY_III(𝑝𝐼1, 𝑝𝐼2, 𝑝𝐼3) = sign(Δ)sign(𝑑𝐼1)sign(𝑑𝐼2)sign(𝑑𝐼3)

Δ =(𝑑𝐼3 (𝑑𝐼1 (𝛽𝐼1𝑥 − 𝛽𝐼3𝑥) + _𝐼1𝑥) − 𝑑𝐼1_𝐼3𝑥)
(𝑑𝐼3 (𝑑𝐼2 (𝛽𝐼2𝑦 − 𝛽𝐼3𝑦) + _𝐼2𝑦) − 𝑑𝐼2_𝐼3𝑦)
− (𝑑𝐼3 (𝑑𝐼1 (𝛽𝐼1𝑦 − 𝛽𝐼3𝑦) + _𝐼1𝑦) − 𝑑𝐼1_𝐼3𝑦)
(𝑑𝐼3 (𝑑𝐼2 (𝛽𝐼2𝑥 − 𝛽𝐼3𝑥) + _𝐼2𝑥) − 𝑑𝐼2_𝐼3𝑥)

𝛿Δ =max{𝛿𝐼1, 𝛿𝐼2, 𝛿𝐼3, |𝛽𝐼1𝑥 − 𝛽𝐼3𝑥 |, |𝛽𝐼1𝑦 − 𝛽𝐼3𝑦 |
|𝛽𝐼2𝑥 − 𝛽𝐼3𝑥 |, |𝛽𝐼2𝑦 − 𝛽𝐼3𝑦 |}

YΔ𝑆𝑆𝑆 =8.455458555545215 10−13𝛿10Δ
YΔ𝐿𝑆𝑆 =2.746382982143922 10−12𝛿11Δ
YΔ𝑇𝑆𝑆 =5.881872766622135 10−11𝛿14Δ
YΔ𝐿𝐿𝑆 =9.152602287176878 10−12𝛿12Δ
YΔ𝑇𝐿𝑆 =1.9107143645058585 10−10𝛿15Δ
YΔ𝑇𝑇𝑆 =3.771219780901469 10−9𝛿18Δ
YΔ𝐿𝐿𝐿 =9.823293567468065 10−11𝛿14Δ
YΔ𝑇𝐿𝐿 =1.968414466146938 10−9𝛿17Δ
YΔ𝑇𝑇𝐿 =3.784163138398379 10−8𝛿20Δ
YΔ𝑇𝑇𝑇 =1.1310143236187382 10−5𝛿26Δ

3 POINT COMPARE
We list the expression and semi-static filters for the pointCompare
predicate. The longestAxis predicate has similar expressions and
semi-static filters with pointCompare predicate to prevent degener-
ation on the selected axis.

pointCompare_X_IE(𝑝𝐼1, 𝑝𝐸2) = sign(Δ)sign(𝑑𝐼1)
Δ =𝑑𝐼1 (𝛽𝐼1𝑥 − 𝑝𝐸2𝑥) + _𝐼1𝑥

𝛿Δ =max{𝛿𝐼1, |𝛽𝐼1𝑥 − 𝑝𝐸2𝑥 |}
YΔ𝑆𝐸 =3.108624468950439 10−15𝛿3Δ
YΔ𝐿𝐸 =1.2879996548476053 10−14𝛿4Δ
YΔ𝑇𝐸 =4.680700271819666 10−12𝛿7Δ

pointCompare_X_II(𝑝𝐼1, 𝑝𝐼2) = sign(Δ)sign(𝑑𝐼1)sign(𝑑𝐼2)
Δ =𝑑𝐼1𝑑𝐼2 (𝛽𝐼1𝑥 − 𝛽𝐼2𝑥) + _𝐼1𝑥𝑑𝐼2 − _𝐼2𝑥𝑑𝐼1

𝛿Δ =max{𝛿𝐼1, 𝛿𝐼2, |𝛽𝐼1𝑥 − 𝛽𝐼2𝑥 |}
YΔ𝑆𝑆 =1.6431300764452333 10−14𝛿5Δ
YΔ𝐿𝑆 =6.084585960075558 10−14𝛿6Δ
YΔ𝑇𝑆 =1.6022738691390292 10−12𝛿9Δ
YΔ𝐿𝐿 =2.20746164403263 10−13𝛿7Δ
YΔ𝑇𝐿 =5.27253154330999 10−12𝛿10Δ
YΔ𝑇𝑇 =1.0712852827055069 10−10𝛿13Δ

REFERENCES
Marco Attene. 2020. Indirect Predicates for Geometric Constructions. Comput. Aided

Des. 126 (2020), 102856.
Hervé Brönnimann, Christoph Burnikel, and Sylvain Pion. 1998. Interval Arithmetic

Yields Efficient Dynamic Filters for Computational Geometry. In Proc. Annu. Symp.
Comput. Geom. (SCG ’98). 165–174.

Michael Hemmer, Susan Hert, Sylvain Pion, and Stefan Schirra. 2023. Number Types.
In CGAL User and Reference Manual (5.6 ed.). CGAL Editorial Board. https://doc.
cgal.org/5.6/Manual/packages.html#PkgNumberTypes

Bruno Lévy. 2016. Robustness and efficiency of geometric programs: The Predicate
Construction Kit (PCK). Comput. Aided Des. 72 (2016), 3–12.

Pion Meyer. 2008. FPG A code generator for fast and certified geometric predicates.
Real Numbers and Computers (2008).

ACM Trans. Graph., Vol. 43, No. 6, Article 165. Publication date: December 2024.

https://doc.cgal.org/5.6/Manual/packages.html#PkgNumberTypes
https://doc.cgal.org/5.6/Manual/packages.html#PkgNumberTypes

	1 Arithmetics and Code Generation
	2 Generalized Orient2d
	3 Point Compare
	References

